BTEC EXTENDED CERTIFICATE IN APPLIED SCIENCE

There are 2 parts to the SIL

- 1. Complete all questions, then mark. The mark scheme is at the end of the document
- 2. Use the information to test yourself. This will be assessed in the initial assessment. Use the video for advice for how to do this:

https://www.youtube.com/watch?v=wrDOoBuP9A8

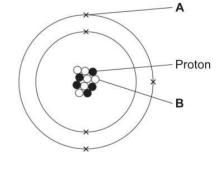
Compulsory content

Fundamentals of Science

Answer all the questions. There are links to websites which you may find helpful. You will be given a test on these concepts at the start of the term.

This unit covers some of the key science concepts in biology, chemistry and physics.

This section looks at some of the chemistry concepts you have covered at GCSE and will cover in more depth in our first unit.


Periodicity and properties of elements

→ Atomic Structure

(1)

https://www.bbc.co.uk/bitesize/guides/zwn8b82/revision/3 (pages 3,4 and 5) https://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom/en.html Q1. Figure 1 shows an atom of element G.

Figure 1

Draw a ring around the correct answer to complete each sentence.

(a) Label **A** shows

an electron an ion a nucleus (1)

(b) Label **B** shows

an isotope a molecule a neutron (1)

(c) The atomic number of element G is

5 6 10 11 16

(d) The mass number of element G is

5 **6 10 11 16** (1)

→ Periodic Table

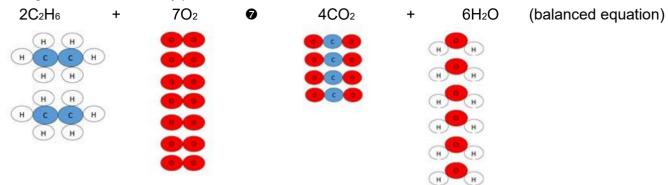
https://www.bbc.co.uk/bitesize/guides/ztv797h/revision/2 (pages 2-8) https://www.rsc.org/periodic-table/

Q2. The Periodic table below contains **six** errors. Highlight these.

v					Н	2											He
Li	Be	6										В	С	N	0	FI	Ne
na	Mg											Al	Si	P	S	CL	Ar
K	Ca	Sc	Ti	V	Cr	Mn	fe	co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	У	Zr	Nb	Мо	Tc	Ru	Rh	pD	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

Q3. Complete the labels on the diagram below using the following terms:

		etals oble g	jases		_	netals ne-Ea		etals		grou Halo	-			perio Alkali	d i meta	als			
	617					٦							22	1020	2				number
	1	2						1.0 H					3	3 4	5 1	5 6	7	1(3) 4.0 He	1
1	(1)	(2)			Key			hydrogen 1				←	(13)	(14)	(15)	(16)	(17)	helium 2	
2	6.9 Li lithium 3	9.0 Be beryllium 4		5244200	tive atomic symbol name ic (proton)	E .							10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen 7	16.0 O oxygen 8	19.0 F fluorine 9	20.2 Ne neon 10	
3	23.0 Na sodium 11	24.3 Mg magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	27.0 Al aluminium 13	28.1 Si silicon	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 Cl chlorine 17	39.9 Ar argon 18	
4	39.1 K potassium 19	40.1 Ca calcium 20	45.0 Sc scandium 21	47.9 Ti titanium 22	50.9 V vanadium 23	52.0 Cr chromium 24	54.9 Mn manganese 25	55.8 Fe iron 26	58.9 Co cobalt 27	58.7 Ni nickel 28	63.5 Cu copper 29	65.4 Zn zinc 30	69.7 Ga gallium 31	72.6 Ge germanium 32	74.9 As arsenic 33	79.0 Se selenium 34	79.9 Br bromine 35	83.8 Kr krypton 36	
5	85.5 Rb rubidium 37	87.6 Sr strontium 38	88.9 Y yttrium 39	91.2 Zr zirconium 40	92.9 Nb niobium 41	96.0 Mo molybdenum 42	[98] Tc technetium 43	101.1 Ru ruthenium 44	102.9 Rh rhodium 45	106.4 Pd palladium 46	107.9 Ag silver 47	112.4 Cd cadmium 48	114.8 In Indium 49	118.7 Sn tin 50	121.8 Sb antimony 51	127.6 Te tellurium 52	126.9 I iodine 53	131.3 Xe xenon 54	
6	132.9 Cs caesium 55	137.3 Ba barium 56	138.9 La * lanthanum 57	178.5 Hf hafnium 72	180.9 Ta tantalum 73	183.8 W tungsten 74	186.2 Re rhenium 75	190.2 Os osmium 76	192.2 Ir Iridium 77	195.1 Pt platinum 78	197.0 Au gold 79	200.6 Hg mercury 80	204.4 TI thallium 81	207.2 Pb lead 82	209.0 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86	
7 ▲	[223] Fr francium 87	[226] Ra radium 88	[227] Ac † actinium 89	[267] Rf rutherfordium 104	[268] Db dubnium 105	[271] Sg seaborgium 106	[272] Bh bohrium 107	[270] Hs hassium 108	[276] Mt meitnerium 109	[281] Ds damstadtium 110	[280] Rg roentgenium 111	100000	ments with	atomic nun	NO MODERNIA	16 have be	1000	1000	
 	 ımber	-					5.1					541					—		(8)


(6)

	abundant isotope co	ntains 20 neutrons. T	both of which contain the second isotope is threatoms contain 2 electrones in the third.	ee time more abundant
	(a) Where in the Periodic Ta	ble is element X four	d:	
	Group:	Period:		(2)
	(b) Use the Periodic Table in X	Q3. the key and you	answer to Q4.(a) to com	plete Figure 2 . for element
	Ar			
	Symbol name			
	Z Key			
	Ney			
				(4)
				(-)
	(c) Is element X a metal or	non-metal?		(1)
	(c) Is element X a metal or(d) Identify an element, in the			(1) point than X .
	• •			(1)
+	(d) Identify an element, in the	eactions and ize/guides/zy4pmsg/r	which has a lower boiling d equations evision/1 (pages 1-	(1) point than X .
+	Chemical r https://www.bbc.co.uk/bites 6) https://www.bbc.co.uk/bi 1,2) Equations are used to show Reactants are written on the	eactions and ize/guides/zy4pmsg/rutesize/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/guides/z2bfxfr/rutes/guides/gu	which has a lower boiling dependence of the equations of the equations of the equation of the	(1) point than X (1)
+	Chemical r https://www.bbc.co.uk/bites 6) https://www.bbc.co.uk/bi 1,2) Equations are used to show Reactants are written on the For example:	eactions and ize/guides/zy4pmsg/rutesize/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/z2bfxfr/rutes/guides/guides/z2bfxfr/rutes/guides/gu	which has a lower boiling dequations evision/1 (pages 1- revision/1 (pages I products are written on	(1) point than X (1)

Q4. Read the information below on element X carefully. Use this to help you answer the questions

which follow.

Atoms cannot be created or destroyed. They are simply rearranged. Therefore, the equation with formulae needs balancing. (You can only add more of the same molecules. You cannot change the formula of any.)

The relative formula mass of a molecule/compound (M_r) can be calculated by adding the A_r of all the atoms it contains. The A_r value for all elements can be found in the Periodic Table.

 A_r of C is 12.0, A_r of H is 1.0 and A_r of O is 16.0

$$M_r$$
 of $C_2H_6 = (2 \times 12.0) + (6 \times 1.0) = 30.0$

$$M_r$$
 of $CO_2 = 12.0 + (2 \times 16.0) = 44.0$

$$M_r$$
 of $O_2 = (2 \times 16.0) = 32.0$

$$M_r$$
 of $H_2O = (2 \times 1.0) + 16.0 = 18.0$

(8)

The total mass of the reactants = the total mass of the products

Mass of reactants =
$$(2 \times M_r C_2H_6) + (7 \times M_r O_2) = (2 \times 30.0) + (7 \times 32.0) = 284.0$$

Mass of products =
$$(4 \times M_r CO_2) + (6 \times M_r H_2O) = (4 \times 44.0) + (6 \times 18.0) = 284.0$$

Q5. Lithium reacts with water to form lithium hydroxide and hydrogen.

(a) Balance the symbol equation for this reaction

(b) (i) Complete the table below for this reaction

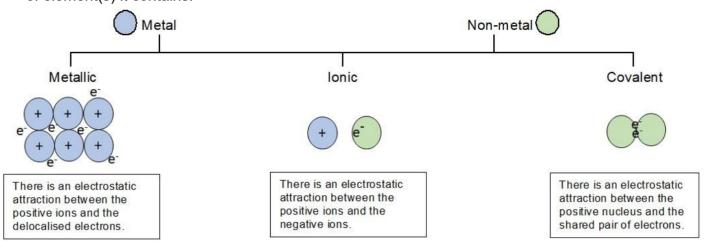
	Reactant or product	State	Mr
Lithium			
Water	reactant	liquid	18.0
Lithium hydroxide			
Hydrogen			

(ii) Calculate the total mass of the reactants.	. Are these the same a	as the total mas	s of the products?
Show your workings.			

(2)

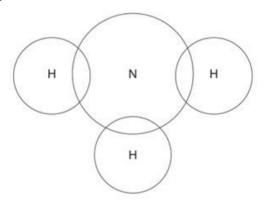
→ Bonding

Chemical reactions involve the breaking and making of bonds. This involves electrons being transferred or shared between atoms.


The total number of electrons at the end of the reaction must be the same as at the start.

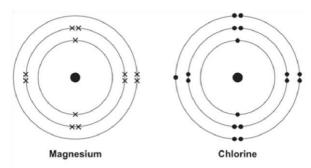
Metal atoms **lose** electrons and form **positively** charged **ions**.

Non-metal atoms gain electrons and form negatively charged ions


OR by **sharing** them (in pairs) with another non-metal atom https://www.bbc.co.uk/bitesize/topics/z33rrwx (ionic compounds, small molecules, metals and alloys)

How do you know which type of bonding is present in an element or compound? Consider the type of element(s) it contains:

Q6. The electronic structure of a potassium atom is 2,8,8,1 Draw a diagram to show the electronic structure of a potassium ion. Show the charge on the ion.


Q7. Complete the dot and cross diagram to show the electrons in the outer shells of ammonia, NH₃. Use the periodic table to help you.

(2)

(2)

Q8. The diagrams shown an atom of magnesium and an atom of chlorine.

Describe, in terms of electrons, how magnesium atoms and chlorine atoms change into ions to produce Magnesium chloride, $MgCl_2$. You may draw labelled diagrams.

······
······
·····
(4)

Investigating Science

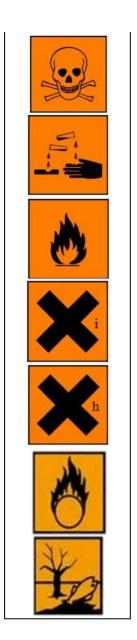
In this unit you will be required to complete a lot of practical procedures as well as designing experiments and investigations and so it is important that you know about laboratory safety.

→ Laboratory Safety

Watch the video on safety in the laboratory: https://www.youtube.com/watch?v=RhIOYhOvCsQ
 Use this to complete a list of safety rules to follow when completing any experiment.

1.	
3.	
4.	
5.	
6.	
7.	
8.	

(8)


You will be using a number of different chemicals and apparatus when completing these experiments.

- Follow the instructions provided to complete the table below on hazard symbols
 - i) Match the old hazard symbol to the new symbol.
 - ii) Match the new hazard symbol to the hazard name.
 - **iii)** List the precautions which should be taken (in addition to wearing a labcoat and safety glasses) when handling chemicals with these hazards to minimise the chance of an accident occurring.

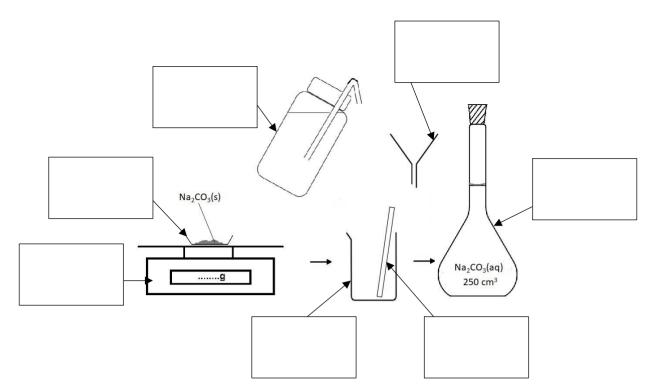
wnen na	ın
Old	

Name	Precautions
harmful / irritant	
oxidising agent	

flammable	
harmful to the environment	
corrosive	
toxic	

(19)

> Practical techniques


One of the practical techniques you may need to complete is the preparation of a standard solution and performing a titration to test the solution you have prepared.

- Watch these videos to help you answer the questions <u>https://www.youtube.com/watch?v=xBKyjXUhJy0</u>
- https://www.youtube.com/watch?v=rLc148UCT2w
- https://www.youtube.com/watch?v=gzvzvDv BnA

Q1. (a) What is a standard solution?	
	(1)

(b) The diagram below shows the apparatus used to make a standard solution of sodium carbonate.

Complete the labels. (7)

(c) The standard solution prepared can be used to find the concentration of a solution of hydrochloric acid.

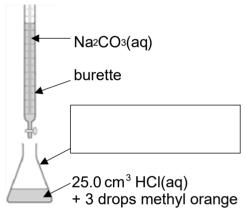
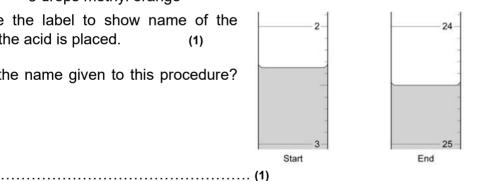



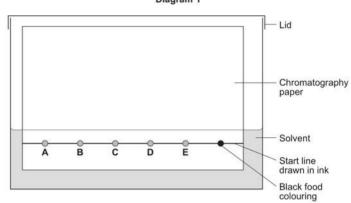
Figure 2.

- (i) Complete the label to show name of the in which the acid is placed. (1)
- (ii) What is the name given to this procedure?

apparatus

Figure 2. shows the level of the sodium carbonate solution in the burette at the start and (iii) the end of one titration. Use these to work out the volume of sodium carbonate added in the titration. Give your answer to 2 d.p.

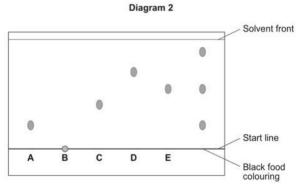
Volume Na₂CO₃(aq) added =cm³ (1)


Another practical technique you may need to complete is chromatography.

The links below may help you to answer the questions on this technique. https://www.youtube.com/watch?v=lj5OWzhZSac https://www.bbc.co.uk/bitesize/guides/z9dfxfr/revision/4

Q2. chromatography for? (a) What is used

 (1)


(b) A student used paper chromatography to analyse a black food colouring. They placed spots of known food colours, A, B, C, D and E and the black food colouring on a sheet of chromatography paper. They set up the apparatus as shown in **Diagram 1**.

The student made **two** errors in setting up the apparatus. Identify the **two** errors and describe the problem each error would cause.

••••	
 ••••	

(c) A different student set up the apparatus without making any errors. The chromatogram in **Diagram** 2. shows the student's results.

(i) What do the results tell you about the composition of the black food colouring?

.....

			Diatanaa in mm	1
F			Distance in mm	<u> </u>
	Distance from start lin	e to solvent front		
	Distance moved by fo	od colour C		
_	Use your answers ir	n (c)(ii) to calculate the R _f va	lue for food colour C . Show y	⊐ ⁄our worki
			Daraha	
			R _f value =	
	•		xperiments that were carried	d out on s
	Known lood colours,	using the same solvent as	ine students.	
Γ		Table 2.	Distance would be food	
	Name of food colour	Distance from start line to solvent front in mm	Distance moved by food colour in mm	R _f value
	Ponceau 4R	62	59	0.95
	Carmoisine	74	45	0.61
	Fast red	67	27	0.40
	Erythrosine	58	17	0.29
				itogram?

→ Obtaining and analysing results obtained in an experiment

It is important to keep a record of all data whilst carrying out practical work. It is good practice to draw a table before starting the experiment and then enter results straight into the table.

Tables should have clear headings with units.

Time / min	Temperature /
0	27.6
1	27.4
2	27.2

The independent variable is the left-hand column in a table, with the following columns showing the dependent variables. All measurements should be written to the same number of decimal places (matching the precision of the measuring instrument).

Q3. A student was told to complete a practical to investigate how temperature affects the rate of a reaction. The student carried out the reaction at five different temperatures and recorded the time taken for each.

The student then calculated the rate of reaction, in $s^{\text{-}1}$ for each experiment using the equation:

rate of reaction =
$$\frac{1}{1}$$

The student's results and calculations are shown below:

at 24.5 \square C the experiment to	ok 340 seconds	$1/340 = 0.0029 \text{s}^{-1}$
at 39.0 \square C it took 256 sec s $1/124 = 0.0081 \text{ s}^{-1}$	$1/256 = 0.0039 \text{ s}^{-1}$	at 58.0 \square C the experiment took 124
80.5 0 C 62 s		1/62 = 0.0161
51 NC 186 s		1/186 = 0.0054

(a) What is the independent variable in this experiment? Circle the correct answer

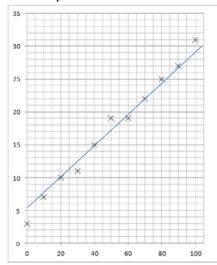
(a) What is the indep	delinetii valiable iii iiiis e	cheminents oncie me correct ar	ISWEI	
rate of rea	action time	temperature	(1) (b)	
Tabulate the student's data in an appropriate manner.				

1	1	1

https://www.bbc.co.uk/bitesize/guides/z8fg6yc/revision/8

Drawing a graph of the results obtained usually makes it easier to interpret the data and draw conclusions.

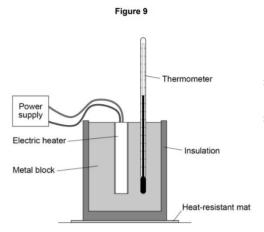
The independent variable is shown on the *x*-axis and the dependent variable is shown on the *y*-axis.


Axes should always be labelled with the quantity being measured and the units.

time / seconds Data points should be marked with a cross, x.

When choosing the scales consider:

- the maximum and minimum values of each variable.
- whether 0,0 should be included as a data point.
- how to draw the axes without using difficult scale markings (e.g. multiples of 3, 7, etc)
- the data points should cover at **least half** of the grid supplied for the graph.

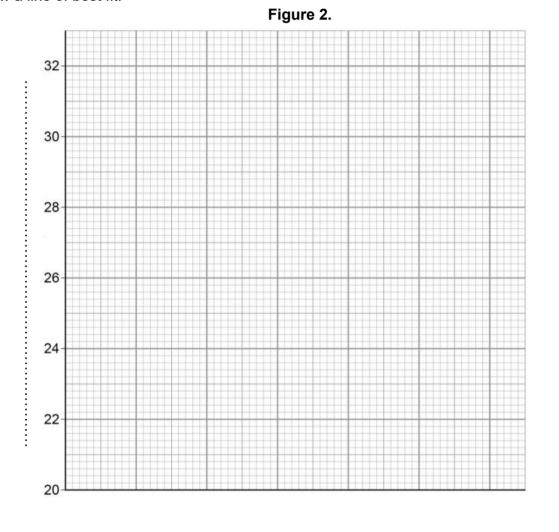

Consider the following when deciding where to draw a line of best fit:

- the line can be straight or curved
- the line should pass through, or very close to, the majority of plotted points (ignoring any anomalous points)
- for points not on the line make sure that there are as many points on one side of the line as the other
- the line should be continuous and drawn with a sharp pencil (use a rule for a straight line)
- the line will go through the origin (0,0) if a value of 0 for the independent variable would produce a value of 0 for the dependent variable
- **Q4.** A student investigated how the temperature of a metal block changed with time.

An electric heater was used to increase the temperature of the block.

The heater was place in a hole drilled in the block as shown in Figure 1.

Time in s	Temperature in □C
0	20.0
60	24.5


The	120	29.0
	180	31.0
	240	31.5

student measured the temperature of the metal block every 60 seconds. **Table 3.** shows the student's results.

Table 3.

- (a) Complete the graph of the data from Table 3. on Figure 2.
- Choose a suitable scale for the x-axis.
- Label the x-axis and label the y-axis.
- Plot the student's results.
- Draw a line of best fit.

(5)

(b) Use the graph to find the temperature of the metal block at time 100 s.

Temperature at 100s = □C (1)

	Gradient = □C /
Highly recommended content Make notes from the following resources, then have	a as at completing the guestions
Make notes from the following resources, then have	a go at completing the questions
	■####
Titrations and mole calculations	
https://www.bbc.co.uk/bitesize/guides/zx98pbk/revisi	ion/3
https://www.youtube.com/watch?v=wPGVQu3UX	D Note 1
https://www.youtube.com/watch?v=ovx-Sro4NXN	
l. This question is about acids and alkalis.	
·	
(a) Dilute hydrochloric acid is a strong acid.	
Explain why an acid can be described as both	n strong and dilute.

A student titrated 25.0 cm³ portions of dilute sulfuric acid with a 0.105 mol/dm³ sodium hydroxide solution.

(c) The table below shows the student's results.

	Titration	Titration	Titration	Titration	Titration
	1	2	3	4	5
Volume of sodium hydroxide solution in cm ₃	23.50	21.10	22.10	22.15	22.15

The equation for the reaction is:

(d)

2 NaOH +
$$H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$$

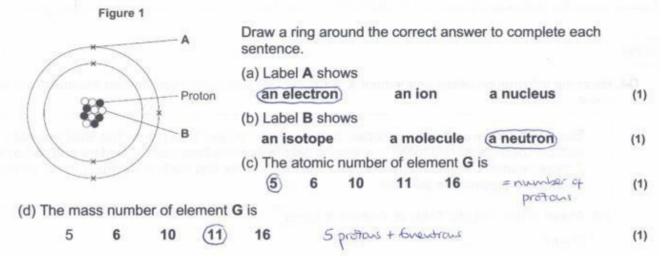
Calculate the concentration of the sulfuric acid in mol/dm³

Use only the student's concordant results.

	_
Concentration of sulfuric acid = mol	/dm³
Explain why the student should use a pipette to measure the dilute sulfuric acid and to measure the sodium hydroxide solution.	

			(2
	(e)	Calculate the mass of sodium hydroxide in 30.0 cm^3 of a 0.105 mol/dm^3 solution. Relative formula mass (M_r): NaOH = 40	
		Mass of sodium hydroxide =(Total 12	g (2 marks
Q2		(Total 12	marks
		udent investigated the reactions of copper carbonate and copper oxide with dilectoric acid.	ute
	In bo	oth reactions one of the products is copper chloride.	
	(a)	Describe how a sample of copper chloride crystals could be made from copper carb and dilute hydrochloric acid.	onate
			
			(4
	(b)	A student wanted to make 11.0 g of copper chloride.	
		The equation for the reaction is:	
		$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$	
		Relative atomic masses, A_r : H = 1; C = 12; O = 16; Cl = 35.5; Cu = 63.5	
		Calculate the mass of copper carbonate the student should react with dilute hydrochl acid to make 11.0 g of copper chloride.	oric

	Mass of copper carbonate =	g
c)	The percentage yield of copper chloride was 79.1 %. Calculate the mass of copper chloride the student actually produced.	·
		


Mark Scheme

Periodicity and properties of elements

☐ Atomic Structure

https://www.bbc.co.uk/bitesize/guides/zwn8b82/revision/3 (pages 3,4 and 5) https://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom en.html

Q1. Figure 1 shows an atom of element G.

☐ Periodic Table

https://www.bbc.co.uk/bitesize/guides/ztv797h/revision/2 (pages 2-8) https://www.rsc.org/periodic-table/

Q2. The Periodic table below contains six errors. Highlight these.

						1												CAPIT
		R			Н												He	the
Li	Be											В	С	N	0	FI	Ne	
na	Mg		,				/	li				Al	Si	P	S	CL	Ar	
K	Ca	Sc	Ti	٧	Cr	Mn	fe	co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	У	Zr	Nb	Мо	Тс	Ru	Rh	pD	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg						7.5		

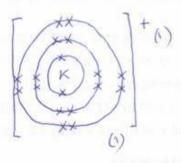
(6)

Q3. Complete the labels on the diagram below using the following terms: metals non-metals group period Noble gases Alkaline-Earth metals Halogens Alkali metals Noble Alkali gaup. Halogens gares metals number Alkaline-Earth metals 7 2 3 5 40 4.0 He 1 netals elative atomic mass symbol 6.9 Li 9.0 Be 12.0 C 14.0 N 16.0 10 22.0 Na 24.J Mg 35.5 CI 27.0 **Al** 3 (5) 47.9 Ti 72.6 Ge 79.9 Br 39.1 K 40.1 Ca 45.0 Sc 52.0 Cr. 54.9 Mn SE9 Co SE./ 63.5 Cu 55.4 Zn 69.7 Ga 74.9 **As** 79.0 Se 4 22 27 29 107.9 **Ag** 114.8 In 92.9 Nb 96.0 Mo Tc 101.1 Ru 102.9 Rh 112.4 Cd 21.8 Sb 85.5 Rb Pd 5 132.9 Cs 137.3 Ba 138.9 La * Ta 186.2 Re 190.2 Os 195.1 Pt 200.6 Hg 209.0 Bi [210] At 6 73 75 78 72 [227] Ac + 272 Bh [270] Hs [291] Ds |226| |Ra 268] Db mic numbers 112-116 have period metals number (8)Q4. Read the information below on element X carefully. Use this to help you answer the questions which follow. Element X has two different isotopes, both of which contain 17 protons. The least abundant isotope contains 20 neutrons. The second isotope is three time more abundant and contains 2 more neutrons. All the atoms contain 2 electrons in the first shell, 8 electrons in the second shell and 7 electrons in the third. (a) Where in the Periodic Table is element X found: Period: 3..... Group:7...... (2) (b) Use the Periodic Table in Q3. the key and your answer to Q4.(a) to complete Figure 2. for element X Kev 35.5 A Symbol name chloring. Z .17... (4) (c) Is element X a metal or non-metal? (1) (d) Identify an element, in the same group as X, which has a lower boiling point.

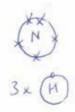
(1)

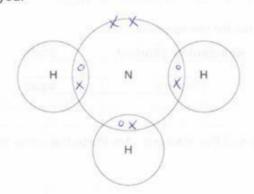
- Q5. Lithium reacts with water to form lithium hydroxide and hydrogen.
 - (a) Balance the symbol equation for this reaction

..2. Li(s) + ...2.
$$H_2O(1) \rightarrow ...2.$$
 LiOH(aq) + $H_2(g)$ (1)


(b) (i) Complete the table below for this reaction

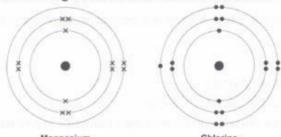
	Reactant or product	State	Mr
Lithium	reactant	said	
Water	reactant	liquid	18.0
Lithium hydroxide	product	agneous (solution	23.9
Hydrogen	product	gas	20


(ii) Calculate the total mass of the reactants. Are these the same as the total mass of the products? Show your workings.


Q6. The electronic structure of a potassium atom is 2,8,8,1

Draw a diagram to show the electronic structure of a potassium ion. Show the charge on the ion.

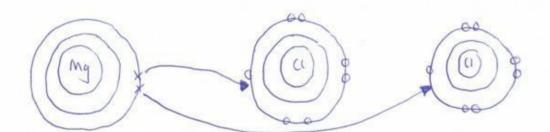
Q7. Complete the dot and cross diagram to show the electrons in the outer shells of ammonia, NH₃. Use the periodic table to help you.


5 x (1) 3 0 sharing 3 pairs (1)

(2)

(2)

(8)


Q8. The diagrams shown an atom of magnesium and an atom of chlorine.

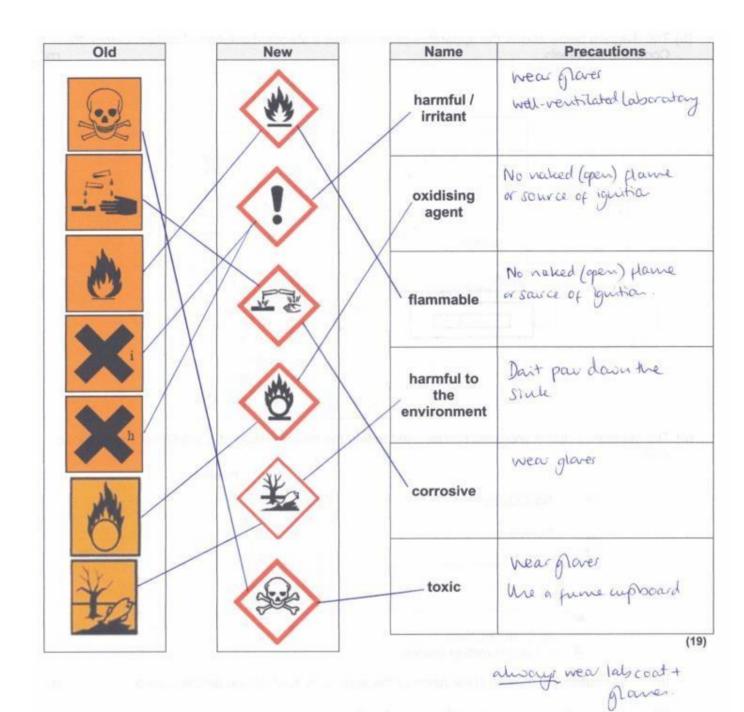
Magnesium

Chlorine

Describe, in terms of electrons, how magnesium atoms and chlorine atoms change into ions to produce Magnesium chloride, MgCl₂. You may draw labelled diagrams.

Unit 2: Practical Scientific Procedures and Techniques

In this unit you will be required to complete a lot of practical procedures and so it is important that you know about laboratory safety.

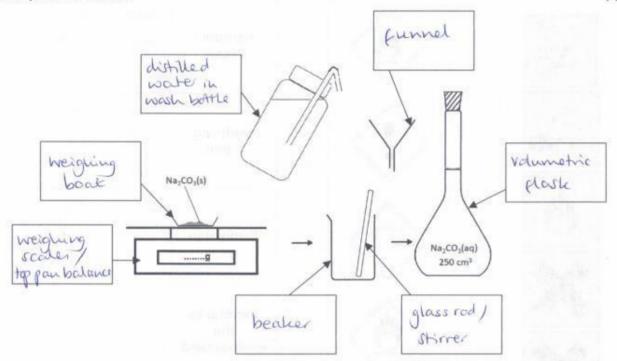

☐ Laboratory Safety

 Watch the video on safety in the laboratory: https://www.youtube.com/watch?v=RhIOYhOvCsQ

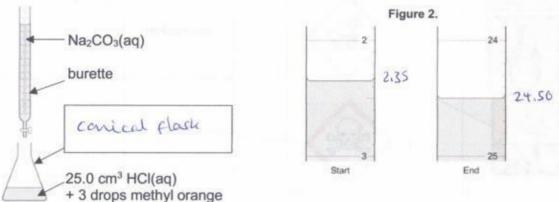
Use this to complete a list of safety rules to follow when completing any experiment.

1.	Wear a lab coat (buttoned up)
2.	Wear safety glasses/gaggles
3.	Tie back lang hair (pasticularly when ushe a Bursen burner)
4.	Write a MSk anemment (before your congalete the practical)
	Keep the lab tidy
6.	Wipe up spillages
7.	Do not eak (or dissue or changem) in the lab
8.	wash you hound (paticulary begone you leave the lab)

(8)


Practical techniques

One of the practical techniques you will need to complete is the preparation of a standard solution and performing a titration to test the solution you have prepared.


 Watch these videos to help you answer the questions <u>https://www.youtube.com/watch?v=xBKyjXUhJy0</u> <u>https://www.youtube.com/watch?v=rLc148UCT2w</u> https://www.youtube.com/watch?v=gzvzvDv BnA

Q1. (a) What is a standard solution? It is a solution of (accurately) known

(b) The diagram below shows the apparatus used to make a standard solution of sodium carbonate. Complete the labels.
(7)

(c) The standard solution prepared can be used to find the concentration of a solution of hydrochloric acid.

- (i) Complete the label to show name of the apparatus in which the acid is placed. (1)
- (iii) Figure 2. shows the level of the sodium carbonate solution in the burette at the start and the end of one titration. Use these to work out the volume of sodium carbonate added in the titration. Give your answer to 2 d.p.

8

2 numbers after the decimal point

Q2. (a) What is chromatography used for?	to separate	land analys	e) comparents.
70.00 (E. 10)	1 = 0		1
in a mixture			(1)

(b) A student used paper chromatography to analyse a black food colouring. They placed spots of known food colours, A, B, C, D and E and the black food colouring on a sheet of chromatography paper. They set up the apparatus as shown in Diagram 1.

Diagram 1

Lid

Chromatography paper

Solvent

A B C D E

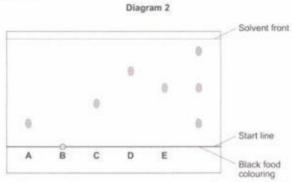
Start line drawn in ink

Black food colouring

The student made **two** errors in setting up the apparatus. Identify the **two** errors and describe the problem each error would cause.

Stat live drawn in ink

so it will run I dissolve in the solvent


(1)

Solvent above the stat line / spas under the solvent

so they will work off the paper/ mix with the solvent

(1)

(c) A different student set up the apparatus without making any errors. The chromatogram in **Diagram** 2. shows the student's results.

(i) What do the results tell you about the composition of the black food colouring?

The black food coloring contains A and E (1)
and one other (unknown) substance (1)

9

(ii) Use Diagram 2. to complete Table 1.

(2)

Table 1.

	Distance in mm
Distance from start line to solvent front	28.5 / 29
Distance moved by food colour C	allow 11-12

(iii) Use your answers in (c)(ii) to calculate the R_f value for food colour ${\bf C}$. Show your workings.

 R_f value = .0.38 - 0.42. (1)

(iv) Table 2. gives the results of chromatography experiments that were carried out on some known food colours, using the same solvent as the students.

Table 2.

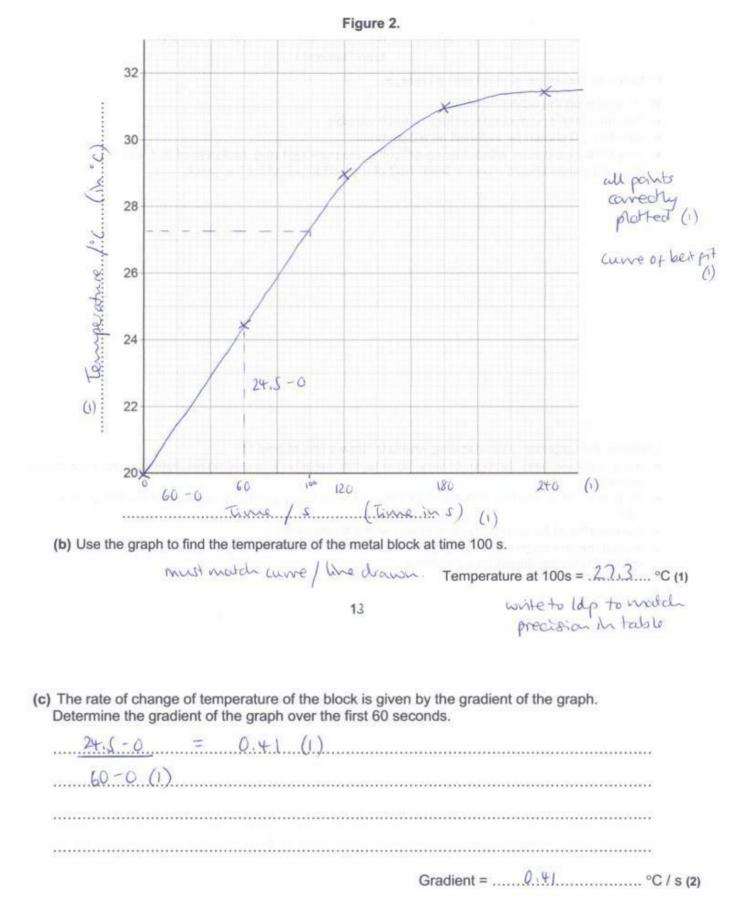
Name of food colour	Distance from start line to solvent front in mm	Distance moved by food colour in mm	R _f value
Ponceau 4R	62	59	0.95
Carmoisine	74	45	0.61
Fast red	67	27	0.40
Erythrosine	58	17	0.29

Which of the food colours in **Table 2**, could be food colour **C** from the chromatogram? Give the reason for your answer.

Fast red (1)	allas Mare
has same the yeinida Rt b.)	
	(2)

Q3. A student was told to complete a practical to investigate how temperature affects the rate of a reaction. The student carried out the reaction at five different temperatures and recorded the time taken for each.

The student then calculated the rate of reaction, in s⁻¹ for each experiment using the equation:


The student's results and calculations are shown below:

at 24.5 °C the experiment took 340 seconds	1/340 = 0.0029 5-1
at 39.0 °C it took 256 sec	1/256 = 0.0039 s-1
at 58.0 °C the experiment took 124 s	1/124 = 0.0081 s-1
80.5°C 62 s	1/62 = 0.0161
51°C 186's	1/186 == 0.0054

(a) What is the independent variable in this experiment? Circle the correct answer

	rate of reaction	time	(temperature)	(1)
(b)	Tabulate the student's data in	an appropriate man	ner.	(4)

temperature 1°C	time1	rate of reaction 1.5.
24,5	340	0.0029
39.0	256	0.0039
51.0	186	0.0054
58.0	124	0.0081
80.5	62	0.0161

Highly recommended content

Q1.

(a) (strong because) completely ionised (in aqueous solution)

ignore pH allow dissociated for ionised do **not** accept hydrogen is ionising do **not** accept H⁺ are ionised

(dilute because) small amount of acid per unit volume ignore low concentration

(c) (titre):

chooses titrations 3, 4, 5

average titre = 22.13 (cm³)

allow average titre = 22.13(3...) (cm³) allow a correctly calculated average from an incorrect choice of titrations

1

1

1

1

1

1

1

(calculation):

(moles NaOH =

$$\frac{22.13}{1000} \times 0.105 = 0.002324$$

allow use of incorrect

average titre from step 2

(moles $H_2SO_4 =$

 $\frac{1}{2} \times 0.002324 =) 0.001162$

allow use of incorrect number of moles from step 3

(concentration =

$$\frac{0.001162}{25} \times 1000$$
)

 $= 0.0465 \text{ (mol/dm}^3)$

allow use of incorrect number of moles from step 4

alternative approach for step 3, step 4 and step 5

$$\frac{2}{1} = \frac{22.13 \times 0.105}{25.0 \times conc. H_2 SO_4} (1)$$

(concentration $H_2SO_4 =$)

= 0.0465 (mol/dm³) (1) an answer of 0.046473 or 0.04648 correctly rounded to at least 2 sig figs scores marking points 3, 4 and 5 an answer of 0.092946 or 0.09296 or 0.185892 or

0.18592 correctly rounded to at least 2 sig figs scores marking points 3 and 5 an incorrect answer for one step does **not** prevent allocation of marks for subsequent steps

(d) pipette measures a fixed volume (accurately) 1 (but) burette measures variable volume allow can measure drop by drop 1 $(\text{moles} =) \frac{30}{1000} \times 0.105$ (e) or 0.00315 (mol) or (mass per dm 3 =) 0.105 × 40 **or** 4.2 (g) 1 $(mass = \frac{30}{1000} \times 0.105 \times 40)$ = 0.126 (g)an answer of 0.126 (g) scores 2 marks an answer of 126(g) scores 1 mark an incorrect answer for one step does not prevent allocation of marks for subsequent steps **Q2**. add excess copper carbonate (to dilute hydrochloric acid) (a) accept alternatives to excess, such as 'until no more reacts' 1 filter (to remove excess copper carbonate) reject heat until dry 1 heat filtrate to evaporate some water **or** heat to point of crystallisation accept leave to evaporate or leave in evaporating basin 1 leave to cool (so crystals form) until crystals form 1 must be in correct order to gain 4 marks M_r CuCl₂ = 134.5 correct answer scores (b) 4 marks 1 moles copper chloride = (mass / M_r = 11 / 134.5) = 0.0817843866 1 Mr CuCO₃= 123.5 1 Mass CuCO₃ (=moles \times M₂= 0.08178 \times 123.5) = 10.1(00) 1 accept 10.1 with no working shown for 4 marks

[12]

(c)
$$\frac{79.1}{100} \times 11.0$$

or

11.0 × 0.791

8.70 (g)

1 accept 8.70(g) with no working shown for 2 marks

1