

CONVECTION

the transfer of heat through a fluid (liquid or gas) caused

by molecular motion

Radiation

All objects transfer

energy

to their surroundings

by infrared radiation. The hotter the object. the more infrared radiation it emits

Infrared radiation is a

wave. There are no particles involved. This means that energy can be transferred by radia-

type of electromagnetic tion when there are no particles, like the vacuum of space.

Conductor -Any material that allows electric current to pass through it insulator conductor anv metal copper •aluminum steel

Heating and cooling

Cooling practical

It is often easier to allow a substance to cool down. Salol is a solid used in these investigations. To investigate its cooling curve:

- 1. Put some salol and a thermometer into a boiling tube.
- 2. Put the boiling tube in a hot water bath. Allow the salol to melt and reach the temperature of the hot water.
- Take the boiling tube out of the hot water.
- Measure and record the temperature of the salol every minute for about 20 minutes, stirring briefly to evenly mix the hot and cold parts.

Cooling Curve

Time (minutes)

The specific heat capacity is the amount of energy required to raise the temperature of 1kg of substance by °C, its units are J/(kg K) or J/(kg °C).

Specific Heat Equation

 $Q = mC\Lambda T$ Q Q = thermal energy m = massC C = specific heat

 ΔT = change in temp

The specific heat of silicon is 700 J/kg/°C. How much energy is needed to raise a 7 kg of silicon by 10 °C?

 $c = 700; m = 7kg; \Delta T = 10^{\circ}C$

$Q = mC \wedge T = 7 \times 700 \times 10 = 49000 J$

Insulator -

CONDUCTION the transfer of

heat or electric current from

one substance to another by direct contact

RADIATION

energy that is radiated or

transmitted in the form of

rays or waves or particles

Any material that does not allow electric current to pass through it ·like the protective coating on wires plastic •cloth rubber •wood

Investigating thermal conductivi-

ty

- 1) Add small blobs of wax 2cm apart onto each bar. (as far as this is possible)
- 2) Heat each bar on a medium flame
- 3) Time how long it takes for the 3 blobs of wax

